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ABSTRACT: This paper exhibits a propelled insulin bolus consultant for individuals with diabetes on various day by 
day infusions or insulin pump treatment. The proposed framework, which keeps running on a cell phone, keeps the 
straightforwardness of a standard bolus adding machine while upgrading its execution by giving more versatility and 
adaptability. This is accomplished by method for applying a review enhancement of the insulin bolus treatment 
utilizing a novel blend of rushed to-run (R2R) that utilizations discontinuous ceaseless glucose observing information, 
and case-based thinking (CBR). The legitimacy of the proposed approach has been demonstrated by in-silico considers 
utilizing the FDA-acknowledged UVa-Padova sort 1 diabetes test system. Tests under more reasonable in-silico 
situations are accomplished by redesigning the test system to copy intrasubject insulin affectability varieties and 
instability in the capillarity estimations and sugar admission. The CBR(R2R) calculation performed well in 
reproductions by essentially diminishing the mean blood glucose, expanding the time in euglycemia and totally taking 
out hypoglycaemia. At last, contrasted with a R2R remain solitary form of the calculation, the CBR(R2R) calculation 
performed better in both grown-ups and pre-adult populaces, demonstrating the advantage of the use of CBR. 
Specifically, the mean blood glucose enhanced from 166 ± 39 to 150 ± 16 in the grown-up populaces (p = 0.03) 
andfrom167 ± 25 to 162 ± 23 in the juvenile populace (p = 0.06). Furthermore, CBR(R2R) could totally wipe out 
hypoglycaemia, while the R2R alone was not ready to do it in the immature populace. 
 
KEYWORDS: Artificial intelligence, decision support systems, diabetes, iterative learning control, knowledge-based 
systems, runto-run control.  

I. INTRODUCTION  
 

Sort 1 diabetes mellitus is a ceaseless metabolic infection portrayed by an immune system pulverization of the 
insulin-emitting β-cells of the endocrine pancreas. The subsequent outright insulin inadequacy results in hyperglycemia 
[i.e., high blood glucose (BG)]. At present, the greater part of individuals with T1DM control their BG levels through 
different day by day infusions (before suppers and basally) so as to copy the normal insulin discharge of the pancreatic 
β-cells and by drawing blood from the fingertips and testing the glucose level with an electronic glucose meter (self-
observing of BG). An option treatment to various day by day infusions is given by constant subcutaneous insulin 
implantation (insulin pump treatment), which permits variable basal rates of insulin and stays away from numerous 
uncomfortable infusions.  
 

Expansive intercession trials have demonstrated that tight glycaemic control averts long haul smaller scale and 
macrovascular confusions, to the detriment of an expanded recurrence of hypoglycaemia, highlighting the significance 
of streamlining insulin measurements for the duration of the day, lessening diabetes intricacies which put an 
overwhelming weight on wellbeing administrations. Bolus insulin measurements with dinners are computed by 
assessing sugar admission, separating by an altered starch: insulin proportion and including a remedy dosage got from 
the people insulin affectability element. To computerize this procedure, a few calculations have been produced. Be that 
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as it may, with special case of insulin bolus number crunchers fused in a large portion of the financially accessible 
insulin pumps and in some glucose meters, none of these calculations have been received economically.  

 

 
Fig. 1. Graphical representation of the postprandial glucose area under the curve (AUC) (i.e., striped area). 

Horizontal dashed line represents the baseline to calculate the AUC. Vertical dashed line represents the meal 
ingestion time (0 h) and the 5 h postprandial period. G is the BG value at the time of meal ingestion (0 h) 

andGmin is theminimum glucose values during the postprandial excursion (5 h). 
 

This absence of commercialization is mostly down to monetary danger, security issues, and inactivity to change, 
however the principle explanation behind the absence of accessible frameworks is the generally little remedial 
advantage accomplished by these frameworks contrasted and the huge weight required by the clients. Therefore, extra 
exertion toward more shrewd self-governing frameworks is required. The clinical advantage of hurried to-run (R2R) 
control for naturally conforming the insulin-to-sugar proportion (ICR) parameter of a bolus mini-computer has been 
considered with some underlying promising results. In any case, its appropriateness is restricted by the supposition of 
strict dreariness in the every day routine of individuals with T1DM. This paper displays an inventive choice bolster 
calculation for supper insulin dosing that gives improved versatility and adaptability to current bolus number crunchers 
by utilizing R2R control and case-based thinking (CBR). It is imperative to note that, dissimilar to existing shut circle 
control calculations for glucose control, which convey an insulin measurements each 5 min in view of a constant 
enhancement, our proposed calculation is a choice emotionally supportive network giving bolus insulin dosage 
suggestions taking into account review advancement, which requires endorsement by the client.  
 

The legitimacy of the introduced calculation is shown through an in-silico study utilizing the UVa-Padova T1DM 
test system, which has been changed to consolidate intrasubject variability, clamor in the slender blood estimations, and 
instability in the starch admission. This calculation has now been coordinated into an easy to understand cell phone 
stage for use by subjects with diabetes in a clinical trial. 
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Fig. 2. Glucose concentration resulting from applying the proposed R2R algorithm over 14 days (single meal) on 

subject adult 6 of the T1DM simulator with an initial nonoptimal ICR. Upper and lower dashed lines indicate 
hyper- /hypoglycemia limits (i.e., target zone). 

 
A. Insulin Bolus Calculators 

Insulin bolus calculators are simple decision support systems incorporated in most of the commercially available 
insulin pumps and more recently available within capillary BG monitors. These calculators consist of a relatively 
simple formula that uses subject-specific metabolic parameters to calculate an insulin dose. The standard bolus 
calculator is described as 

B = CHO ICR + G − GTISF − IOB  (1) 
where B is the recommended dose of insulin (IU) to be taken; CHO is the total amount of carbohydrate in the meal 

(gram), ICR is the insulin-to-carbohydrate ratio (g/IU), which describes how many grams correspond to one unit fast 
acting insulin; G is the current capillary BG level (mg/dL); GT is the target BG level (mg/dL); ISF is the insulin 
sensitivity factor (mg/l/IU), which is a personal relation describing how large a drop in BG one unit of insulin gives rise 
to; and IOB is the insulinon-board, which describes the amount of insulin still in the body from previous injections. 
Different formulas are being used by different manufacturers to estimate IOB. It is important to note that parameters 
ISF and ICR are usually not constant and may vary depending on parameters such as circadian rhythms, physical 
activity levels, hormone cycles, psychological stress, alcohol consumption, and recurrent illness. Although some of the 
most recent commercially available bolus calculators allow considering some of these effects (e.g., exercise and stress), 
this feature is rarely used due to the significant burden that represents. Although the clinical benefit of using bolus 
calculators has been demonstrated, their performance remains suboptimal and to achieve a significant improvement in 
glycemic control, a more dynamic, personalized, intelligent system is required. For this purpose, the utilization of 
iterative learning control and CBR is proposed. 
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Fig. 3. CBR cycle proposed by Aamodt and Plaza 
 
B. R2R Control 

R2R is a control method designed to exploit repetitiveness in the process that is being controlled. Its purpose is to 
enhance performance, using a mechanism of trial and error. Owens et al. used this idea to exploit the repetitive nature 
of the insulin therapy regimen of the diabetic patient. This algorithm uses an update law that corrects the ICR of (1) for 
the next day based on a performance metric used to evaluate the postprandial glucose excursion. A pilot clinical study 
showed the efficacy of the R2R algorithm in T1DM subjects. However, the R2R algorithm presents some limitations 
that may restrict its scope of applicability. First of all, the algorithm requires two capillarity BG samples to evaluate the 
postprandial excursion.  

On top of the burden that this represents to the subject, the postprandial excursion of a mixed meal depends on the 
composition, and these two measurement points may not be valid to evaluate certain  meals. Then, R2R assumes that 
the insulin therapy regimen of the person with T1DM is repetitive, which is somewhat unrealistic in many cases. It is 
important to note that the original R2R algorithm only distinguishes between three situations (breakfast, lunch, and 
dinner). Therefore, the utilization of the R2R algorithm may be limited to subjects willing to carry out at least nine 
capillarity measurements per day and with a very repetitive daily routine. 

II. TUNING AND INITIALIZATION 
 

Reference area under the curve parameter (AUCr) was individually determined using a meal tolerance test 
functionality provided by the T1DM simulator, which allows obtaining an optimal postprandial glucose excursion. In a 
real clinical setting, this parameter could be determined by a clinical expert based on retrospective CGM data or a meal 
tolerance test data. The gain K was tuned to converge toward the solution in a reasonable time frame (e.g., 1 week); the 
selection of the values for the remaining parameters, which were the same for all subjects, was based on the 
combination of multiple simulations and clinical knowledge. Note that, in a clinical setting, the gain K could be 
calculated using linear regression to best match the clinically determined dose adjustment as proposed. Parameter Tol 
was chosen to cope with the error due to the CGM sensor, and parameters GT , ICRm, ICRM , GL , GH , KT , and KE 
were selected based on clinical expertize. Finally, parameter TIOB was selected based on the values reported by 
different pump manufacturers (i.e., 2 h ≤ TIOB ≤ 7 h). Although this parameter may have a significant intrasubject and 
intersubject variability, a conservative value of 6 h was selected for all subjects. 
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III. SAFETY AND EFFICACY MEASURES 
 

The following safety and efficacy measures [36] (presented as Mean ± Standard Deviation) were used: The primary 
outcome was mean BG (mg/dL); secondary outcomes were percentage of time and incidence below range (any BG < 70 
mg/dL), percentage of time within the 70–180 mg/dL target range, percentage of time above range in hyperglycemia 
(BG > 180 mg/dL), and BG risk index and risk zones of the control variability grid analysis (CVGA). CVGA is a 
method for visualization of the extreme glucose excursions caused by a control algorithm in a group of subjects, with 
each subject presented by one data point for any given observation period. CVGA is divided into nine zones (A, B, 
lower-B, upper-B, lower-C, upper-C, lower-D, upper-D, E), being zones A+B (including lower and upper) considered 
as optimal control and zones D+E considered as suboptimal control. 

IV. RESULTS 
 

In their work, Owen et al. proposed a convergence analysis for their R2R algorithm. However, the same analysis 
cannot be directly applied to the presented CBR(R2R) algorithm due to the different nature of the algorithms, i.e., 
addition of a CBR algorithm. Nevertheless, it is important to note that CBR(R2R) is equivalent to multiple incidences 
of an R2R algorithm. Therefore, by assuming that the information provided to the CBR(R2R) algorithm is within 
realistic limits of uncertainty, which allow to correctly retrieve the correct case from the case base, the convergence 
analysis of CBR(R2R) is reduced to the analysis of a single incidence of R2R. Therefore, if the proposed R2R 
algorithm is proven to converge, the CBR(R2R) algorithm is, by extension, also convergent. To carry out a 
convergence analysis of the R2R algorithm, a scenario containing one meal with carbohydrate load variability of [40, 
60] gram (uniform distribution) was employed. The initial BG was randomly selected within the range [70,140] mg/dl 
(uniform distribution). The analysis was performed by isolating the parameters CHO, capillary BG and CGM 
measurements while adding different levels of uncertainty to these parameters. Unlike the convergence analysis 
proposed, we considered uncertainties within their realistic bounds and the combination of such uncertainties.  

 
The initial ICR0 for the R2R algorithm was randomly selected within a range of [0.25 · ICR, 4 · ICR] (uniform 

distribution), where ICR is the optimal ICR provided by the T1DM simulator. The past analysis shows the performance 
of the R2R algorithm for each case study after 20 iterations together with the results for a bolus calculator without 
adaptation. For this purpose, the ten adult subjects of the T1DM simulator were employed. It can be seen that the 
algorithm is capable to converge to the target range, i.e., [70, 180] mg/dl, even when significant levels of uncertainty 
are added. Finally, no significant variability was observed on the number of iterations needed to converge to the 
glucose target range for the selected levels of uncertainty. The CBR(R2R) algorithmwas evaluated using the one-month 
scenario presented and four simulation runs. First of all, an initial simulation run (Run 1) was carried out using the 
bolus calculator formula (1) with nonoptimal parameters (ICR and ISF) and without any adaptation. Run 2 consisted of 
applying the CBR(R2R) algorithm with a case base containing a unique case with the same solution as the bolus 
calculator.  

 
Runs 3 and 4 were like Run 2, but starting from the case base generated in the corresponding previous runs. In order 

to evaluate the benefit of enhancing the R2R algorithm with CBR, the R2R algorithm in a stand-alone mode was 
executed in the same scenario. For this purpose, the R2R algorithm in a stand-alone mode was configured with three 
instances of the algorithm corresponding to breakfast, lunch, and dinner show the simulation results corresponding to 
four runs of the R2R algorithm in a stand-alone mode and the CBR(R2R) algorithm, respectively. Results are presented 
as mean ± 1 standard deviation.  

 
Improvement on mean BG levels, percentage of time in hyper-/hypoglycaemic range, risk index, as well as 

percentage in risk zones A + B and D + E of the CVGA, were analyzed using a paired t-test with a significance 
established at p < 0.05. In Table V (i.e., CBR stand-alone mode), a part from the percentage in time below target, all 
the metrics corresponding to the adult population got worse. Although some improvements were observed in the 
adolescent population, these ones were not statistically significant. On the other hand, almost all safety and efficacy 
measures showed statistically significant improvements in both populations when the CBR(R2R) algorithm was 
employed. When comparing the two versions of the algorithm [i.e., R2R versus CBR(R2R)], the mean BG (i.e., 
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primary outcome improved from 166 ± 39 to 150 ± 16 in the adult populations and from 167 ± 25 to 162 ± 23 in the 
adolescent population. In addition, CBR(R2R) was able to completely eliminate hypoglycaemia, while the R2R alone 
was not able to do it in the adolescent population. Fig. 4 shows an example for subject adult#010 comparing the R2R 
and the CBR(R2R) algorithm during Run 4 of the simulation. 

V. CONCLUSION  
 

We presented a novel decision support algorithm for insulin dosing that enhances current standard bolus calculators 
through the utilization of an R2R, CBR, and intermittent usage of CGM data. Good in-silico results using an FDA-
accepted type 1 diabetes simulator were obtained with the presented CBR(R2R) algorithm. First of all, a convergence 
analysis for the novel R2R algorithm was successfully carried out. To evaluate the incremental benefit of using R2R 
and CBR, the full version of the algorithm [i.e., CBR(R2R)] was compared against the R2R control algorithm in a 
stand-alone mode.  

 
This comparison demonstrated a clear benefit of using CBR in combination with R2R with respect to using R2R 

alone. The R2R stand-alone version not only underperformed the CBR(R2R) version, but in some cases (i.e., adult 
population) performed worse than the standard bolus calculator. The reason for the poor performance of the R2R stand-
alone version can be explained by its inability to cope with the significant insulin variability introduced in the 
simulations. It is important to note that R2R is based on the assumption of daily repetitiveness in the process, which is 
not the case for the employed scenario. The obtained results demonstrate that the propose CBR(R2R) algorithm is able 
to tackle with intrasubject variability and external perturbations, and robustness in front of uncertain inputs, i.e., 
carbohydrate intake and noisy CGM measurements.  

It is important to remark that, although very useful for designing and testing purposes, simulators have their 
limitations. In general, simulation environments tend to overestimate the benefits of an intervention, since they do not 
incorporate all of the uncertainty and perturbations that occur in the real world. For this reason, clinical studies are 
required in order to fully validate the proposed algorithm. Therefore, modifications in the current version algorithm 
may be required when tested in a real scenario. Although the proposed algorithm showed robustness against sensor 
noise in simulation, CGM technology still presents some problems of accuracy and reliability that may affect the 
performance of the proposed algorithm in a real-life setting. One way to reduce this problem would be the utilization of 
two sensors.  

 
However, this solution may be too cumbersome for the subject. Another way to improve sensor accuracy would be 

to ask for a postprandial recalibration (e.g., 2 h), which seems a reasonable measure since it is the recommendation 
given for the standard therapy. Finally, in order to deal with sensor failures (e.g., sensor drifts and communication 
problems), a fault detection algorithm could be incorporated to the system. It is important to note that the utilization of 
a CGM device does not need to be continuous, since the decision support system can still provide advice during the 
days when no CGM data are available by using the available cases in the case base, even if they are not optimal. 
Obviously, the R2R control update law can only be executed when these data are available. Therefore, using the CGM 
sensor periodically, although it may take longer to converge an optimal solution, may be beneficial in some cases 
because of usability issues. 
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